- Chapter

Structufes and Unions

101 INTROBUGHOR)

We have seen that arrays can be used to represent a group of data items that belong to the same type,
such as int or float. However, we cannot use an array if we want to represent a collection of data
items of different types using a single name. Fortunately, C supports a constructed data type known as
structures, a mechanism for packing data of different types. A structure is a convenient tool for
handling a group of logically related data items. For example, it can be used to represent a set of
attributes, such as student_name, roll_number and marks. The concept of a structure is analogous to
that of a ‘record’ in many other languages. More examples of such structures are:

time : seconds, minutes, hours

date : day, month, year

book : author, title, price, year

city : name, country, population
address : name, door-number, street, city
inventory : item, stock, value

customer : name, telephone, city, category

Structures help to organize complex data in a more meaningful way. It is a powerful concept that
we may often need to use in our program design. This chapter is devoted to the study of structures and
their applications in program development. Another related concept known as unions is also dis-
cussed.

10.2 DEFINING A STRUCTURE

Unlike arrays, structures must be defined first for their format that may be used later to declare
structure variables. Let us use an example to illustrate the process of structure definition and the

302| Programming in ANSI C

creation of structure variables. Consider a book database consisting of book name, author, number of
pages, and price. We can define a structure to hold this information as follows:

struct book bank

{

. char title[20];
char author[15];
int pages;
float price;

}s

The keyword struct declares a structure to hold the details of fouP data fields, namely title, au-
thor, pages, and price. These tields are called structure elements or members. Each member may
belong to a different type of data. book_bank is the name of the structure and is called the structure
tag. The tag name may be used subsequently to declare variables that have the tag’s structure.

Note that the above definition has not declared any variables. It simply describes a format called
template to represent information as shown below:

title array of 20 characters

author array of 15 characters

pages integer P

price float 1

TR e o oo

. The general format of a structure definition is as follows:

struct tag name

{
data_type memberl;
data_type member2;

}s

In defining a structure you may note the following syntax:
1. The template is terminated with a semicolon.
2. While the entire definition is considered as a statement, each member is declared
independently for its name and type in a separate statement inside the template.
3. The tag name such as book_bank can be used to declare structure variables of its type, later
in the program.

Structures and Unions I 303

@ Arrays Vs Structures)

Both the arrays and structures are classified as structured data types as they pro-
vide a mechanism that enable us to access and manipulate data in a relatively
easy manner. But they differ in a number of ways.

1. An array is a collection of related data elements of same type. Structure can
have elements of different types.

2. An array is derived data type whereas a structure is a programmer-defined
one,

3. Any array behaves like a built-in data type. All we have to do is to declare an
array variable and use it. But in the case of a structure, first we have to design

G and declare a data structure before the variables of that type are declared and J

used.

10.3 DECLARING STRUCTURE VARIABLES

After defining a structure format we can declare variables of that type. A structure variable declara-
tion is similar to the declaration of variables of any other data types. It includes the following ele-
ments. ‘

1. The keyword struct

2. The structure tag name

3. List of variable names separated by commas

4. A terminating semicolon
For example, the statement

struct book bank, bookl, book2, book3;

declares book1, book2, and book3 as variables of type struct book_bank.
Each one of these variables has four members as specified by the template. The complete declara-
tion might look like this:

struct book_bank
{
char title[20];
char author[15];
int pages;
float price;
};
struct book_bank bookl, book2, book3;

Remember that the members of a structure themselves are not variables. They do not occupy any
memory until they are associated with the structure variables such as bookl. When the compiler
comes across a declaration statement, it reserves memory space for the structure variables. It is also
allowed to combine both the structure definition and variables declaration in one statement.

304| Programming in ANSI C

The declaration

struct book_bank

{
char title[20];
char author[15];
int pages;
flat price;

} bookl, book2, book3;

is valid. The use of tag name is optional here. For example:

........

} bookl, book2, book3;

declares bookl, book2, and book3 as structure variables representing three books, but does not
include a tag name. However, this approach is not recommended for two reasons.

1. Without a tag name, we cannot use it for future declarations.

2. Normally, structure definitions appear at the beginning of the program file, before any
variables or functions are defined. They may also appear before the main, along with macro
definitions, such as #define. In such cases, the definition is global and can be used by other
functions as well.

9 Type-Defined Structures >

We can use the keyword typedef to define a structure as follows:
typedef struct

type memberl;
type member?;

} type_name;
The type name represents structure definition associated with it and therefore

can be used to declare structure variables as shown below:
type_name variable1, variable2, ;

Remember that (1) the name type_name is the type definition name, not a vari-
able and (2) we cannot define a variable with typedef declaration. J

104 ACCESSING STRUCTURE MEMBER

We can access and assign values to the members of a structure in a number of ways. As mentioned
earlier, the members themselves are not variables. They should be linked to the structure variables in

